Monatshefte für Chemie 102, 1245—1254 (1971) © by Springer-Verlag 1971

Die Kristallstruktur des Kaliumtetragermanats $K_2[Ge_4O_9]*$

Von

H. Völlenkle und A. Wittmann

Aus dem Institut für Mineralogie, Kristallographie und Strukturchemie der Technischen Hochschule Wien

Mit 2 Abbildungen

(Eingegangen am 25. Februar 1971)

The Crystal Structure of Potassium Tetragermanate K₂[Ge₄O₉]

The crystal structure of potassium tetragermanate $K_2[Ge_4O_9]$ has been determined by means of three-dimensional x-ray data. $K_2[Ge_4O_9]$ crystallizes trigonal with space group P3c1 (No. 165) and lattice parameters a = 11.84 and c = 9.80 Å. The proposed structural relationship to wadeite $K_2Zr[Si_3O_9]$ is confirmed by the existence of $[Ge_3O_9]$ rings built by tetrahedra, which are linked by $[GeO_6]$ octahedra forming a three-dimensional network. The mean Ge—O distances are found to be: 1.762 (tetrahedra) and 1.886 Å (octahedra).

Die Kristallstruktur des Kaliumtetragermanats, $K_2[Ge_4O_9]$, wurde mit Hilfe dreidimensionaler Röntgendaten bestimmt. $K_2[Ge_4O_9]$ kristallisiert trigonal mit der Raumgruppe P3c1 (Nr. 165) und den Gitterparametern: a = 11.84 und c = 9.80 Å. Die vorgeschlagene strukturchemische Beziehung zum Wadeit, $K_2Zr[Si_3O_9]$, wird durch die Existenz tetraedrischer [Ge_3O_9]-Ringe, die über [GeO_6]-Oktaeder zu einem dreidimensionalen Gerüst verknüpft sind, bestätigt. Es wurden folgende mittlere Ge—O-Abstände gefunden: 1.762 (Tetraeder) und 1.886 Å (Oktaeder).

Einleitung

Bereits aus den ersten thermoanalytischen Untersuchungen des Zweistoffsystems K_2O —GeO₂ schlossen *Schwarz* und Mitarb.^{1, 2} auf die Existenz einer Verbindung $K_2Ge_4O_9$. Dieses Ergebnis wurde später durch röntgenographische Untersuchungen bestätigt. Die Bildung dieser Ver-

^{*} Herrn Prof. Dr. H. Nowotny in Verehrung gewidmet.

¹ R. Schwarz und L. Lewinsohn, Ber. dtsch. chem. Ges. 63, 784 (1930).

² R. Schwarz und F. Heinrich, Z. anorg. allgem. Chem. 205, 43 (1932).

bindung wurde auch bei der thermischen Zersetzung des zeolithischen Heptagermanats $K_3HGe_7O_{16} \cdot 4 H_2O$ beschrieben³.

Die Ermittlung der hexagonalen Elementarzelle des Natriumtetragermanats, Na₂Ge₄O₉⁴, führte in der Folge zur Aufdeckung einer bemerkenswerten Verwandschaft der Alkalitetragermanate, M_2 Ge₄O₉^{5, 6} zum Wadeit K₂Zr(Si₃O₉)⁷. Die strukturchemische Beziehung kommt am besten durch die Formel K₂Ge(Ge₃O₉) zum Ausdruck, wobei das Germanium sowohl oktaedrisch als auch tetraedrisch koordiniert (an Stelle von Zr bzw. Si) auftreten müßte. Diese Annahme wird auch durch die IR-Spektren der Tetragermanate unterstützt⁸. Das Volumen der Elementarzelle ist allerdings gegenüber dem Wadeit nach der Beziehung $a_{\text{Tetra}} \approx a_{\text{Wadeit}} \cdot \sqrt[3]{3}$ zu verdreifachen.

Eine analoge Beziehung besteht zwischen den Erdalkalitetragermanaten MGe(Ge₃O₉)^{5,9} und dem Benitoit BaTi(Si₃O₉)¹⁰, die durch die Strukturbestimmung des Bariumtetragermanats, BaGe₄O₉¹¹, sichergestellt ist.

Experimenteller Teil

Durch Hydrothermalsynthesen konnten gut ausgebildete, hexagonal prismatische Einkristalle bis zu 1 mm Länge erhalten werden (etwa 1 Woche bei 270° C). Ein Kristall mit einem mittleren Durchmesser von 0.12 mm und 0.35 mm Länge wurde für *Weissenberg*-Aufnahmen um die c-Achse einjustiert. Zwei Aufnahmeserien mit einem Belichtungsverhältnis 1:10 (CuK α -Strahlung) der 0. bis 8. Schichtlinie dienten zur visuellen Intensitätsermittlung der Reflexe mit Hilfe einer Schwärzungsskala. Die Intensitäten wurden mit dem Lorentz- und Polarisationsfaktor sowie Absorptionskorrekturfaktoren für zylinderförmige Kristalle¹² ($\mu R = 1.8$) umgerechnet.

Auf Grund der beobachteten Auslöschung $h\bar{h}0l$ nur mit l = 2n und der Lauesymmetrie $\bar{3}m$ kommen die beiden Raumgruppen P3c1 und P $\bar{3}c1$ für die Struktur in Betracht. Aus Pulver- und Einkristallaufnahmen wurden die folgenden Gitterparameter berechnet, die sehr gut mit den bereits veröffentlichten Werten⁴ übereinstimmen:

$$a = 11.84$$
 und $c = 9.80$ Å.

⁵ G. Eulenberger, A. Wittmann und H. Nowotny, Mh. Chem. 93, 123 (1962).

⁷ D. E. Henshaw, Mineral. Mag. 30, 585 (1955).

⁸ J. P. Labbé, C. r. hebdomad. Sé. acad. Sci. Paris 259, 1822 (1964).

⁹ C. R. Robbins und E. M. Levin, J. Res. Natl. Bur. Standards 65 A, 127 (1961).

¹⁰ W. H. Zachariasen, Z. Kristallogr. 74, 129 (1930).

¹¹ C. Robbins, A. Perloff und S. Block, J. Res. Natl. Bur. Standards 70 A, 385 (1966).

¹² International tables for x-ray crystallography, Vol. 2. Birmingham: The Kynoch Press. 1959.

³ H. Nowotny und A. Wittmann, Mh. Chem. 84, 701 (1953).

⁴ A. Wittmann und P. Papamantellos, Mh. Chem. 91, 855 (1960).

⁶ A. Wittmann, Fortschr. Mineralog. 43, 230 (1966).

Die Elementarzelle enthält 6 Formeleinheiten K₂Ge₄O₉.

Bestimmung und Verfeinerung der Kristallstruktur

Sowohl im Benitoit als auch im Wadeit liegen die Ringsilicatgruppen $[Si_3O_9]^{6-}$ in Ebenen mit $z = \frac{1}{4}$ bzw. $\frac{3}{4}$ und weisen die Eigensymmetrie 3/m(6) auf, wobei die Silicium- und Brückensauerstoffatome stets Positionen in den Symmetrieebenen einnehmen. Während beim Benitoit die Dreierringe in den beiden Ebenen übereinander angeordnet und jeweils um etwa 35° gegeneinander verdreht sind, liegen sie im Wadeit gemäß der Symmetrie der Schraubenachse 6₃ versetzt vor.

Die beiden markantesten Strukturunterschiede des Bariumtetragermanats gegenüber dem Benitoit sind nun einerseits das Fehlen der Eigensymmetrie 3/m des Dreierringes, was zur Vergrößerung der Zelle in der *a*-Richtung führt, andererseits die Aufhebung der gegenseitigen Verdrehung der Dreierringe, was die Halbierung der *c*-Achse zur Folge hat. Ganz analog läßt sich aus dem Wadeit ein Strukturvorschlag für das Kaliumtetragermanat in der Raumgruppe P $\overline{3}$ c1—D $_{3d}^4$ ableiten. Die Eigensymmetrie 3/m der Dreierringe wird wieder unter Vergrößerung der Zelle in der *a*-Richtung aufgegeben; die zusätzliche Verdrehung der Ringe erfolgt diesmal bis zu deren Ausrichtung nach den zweizähligen Achsen der neuen Raumgruppe P $\overline{3}$ c1. Eine Halbierung der *c*-Achse tritt bei den Alkalitetragermanaten nicht auf, weil die Versetzung der Dreierringe in den beiden Ebenen des Wadeits im Prinzip auch beim Germanat erhalten bleibt, allerdings mit der Symmetrie $\overline{3}$ anstatt 6_3 .

Ein nach diesen Überlegungen abgeleitetes Strukturmodell (Abb. 1) wurde zunächst durch *Fourier*-Projektionen nach [001] verfeinert und erwies sich dabei als richtig. Eine Verfeinerung nach der Methode der kleinsten Quadrate mit allen beobachteten Reflexen über 6 Zyklen ergab bereits einen *R*-Wert * von 8.7%. Der Ausgleichsrechnung wurden die Atomformfaktoren ¹³ für K⁺, Ge²⁺ und O⁻ sowie die Gewichte nach *Hughes* ¹² zugrunde gelegt.

Atom	Punktlage	x	y	z	В
ĸ	12 (g)	0.0015 (4)	0.3364 (4)	0.4275 (5)	1.17 (8)
Ge (1)	2 (b)	0	0	0	1.16 (9)
Ge(2)	4 (d)	1/3	2/3	0.4623 (4)	0.96 (7)
Ge (3)	6 (f)	0	0.1760 (2)	3/4	1.08 (6)
Ge (4)	12(g)	0.1508(2)	0.4860 (2)	0.7146 (2)	0.91 (5)
O(1)	6 (f)	0	0.4764(14)	3/4	0.76 (30)
O (2)	12(g)	0.0781(13)	0.1492(13)	0.8862(13)	0.93 (20)
O(3)	12(g)	0.1150(12)	0.3256(12)	0.6681(13)	0.76(20)
O (4)	12(g)	0.2530(13)	0.5161(13)	0.8533(14)	0.90 (20)
O (5)	12(g)	0.1817(11)	0.5821(11)	0.5701(12)	0.46(18)

Tabelle 1. Atomparameter und Temperaturkoeffizienten für $K_2[Ge_4O_9]$; Werte in Klammern geben die Standardabweichungen der letzten Dezimalen an (Raumgruppe $P3c1-D_{3d}^{\dagger}$)

* $R = (\Sigma || F_0 | - | F_c || / \Sigma | F_0 |) \cdot 100\%$.

¹³ International tables for x-ray crystallography, Vol. 3. Birmingham: The Kynoch Press. 1962.

					······································			
(hkl)	$ F_0 $	$ F_c $	(hkl)	$ F_0 $	$ F_c $	(hkl)	$ F_0 $	$ F_c $
(200)	17	19	(1021)	35	31	(1302)	25	21
(300)	129	120	(231)	41	29	(012)	25	27
(500)	26	22	(331)	72	66	(112)	103	109
(600)	511	563	(431)	39	30	(212)	117	111
(800)	32	29	(631)	87	89	(312)	77	69
(900)	128	116	(731)	31	26	(412)	76	72
(1200)	280	272	(931)	129	113	(512)	24	23
(110)	171	184	(1031)	42	30	(712)	152	139
(410)	112	116	(141)	42	29	(812)	49	41
(710)	54	44	(341)	39	33	(912)	47	42
(1010)	162	143	(441)	293	310	(1012)	60	58
(1210)	17	13	(541)	31	19	(1212)	27	26
(220)	138	142	(941)	32	28	(022)	70	70
(520)	130	116	(1041)	126	139	(122)	104	98
(620)	44	37	(251)	79	73	(222)	207	226
(820)	90	85	(351)	42	38	(322)	104	101
(1120)	57	49	(551)	44	40	(522)	51	53
(1220)	20	18	(851)	47	37	(622)	27	22
(330)	106	95	(361)	53	57	(722)	113	100
(630)	174	162	(861)	26	26	(822)	153	150
(930)	28	22	(961)	43	44	(922)	52	44
(440)	30	26	(171)	135	138	(1122)	40	34
(740)	140	126	(271)	38	34	(032)	386	421
(1040)	50	44	(671)	30	33	(132)	27	18
(550)	249	275	(771)	120	117	(232)	104	88
(850)	35	34	(871)	14	10	(332)	314	349
(950)	19	17	(281)	195	188	(432)	88	83
(1050)	. 16	18	(481)	27	30	(532)	38	30
(660)	319	302	(581)	47	44	(632)	218	241
(860)	24	21	(781)	20	23	(732)	40	34
(960)	107	94	(191)	30	25	(932)	180	176
(770)	57	51	(391)	129	110	(1032)	45	30
(111)	132	141	(491)	28	24	(042)	182	177
(211)	63	59	(691)	37	34	(142)	31 00	19
(311)	21	18	(4101)	126	128	(342)	00 101	84 907
(511)	27	26	(5101)	10	10	(442)	191	201 54
(611)	29	27	(2121)	25	29	(342)	90 97	17
(711)	135	150	(102)	40	40	(142)	21	29
(811)	31	20	(202)	16	04 949	(042)	90 20	14
(1011)	34	27	(302)	294 100	043 01	(342)	20 67	68
(121)	63 9774	50 4 4 7	(402)	170	91 179	(1092)	92	79
(221)	374	447	(802)	160	171	(152)	24	16
(021) (491)	41 96	29	(002)	112	107	(252)	63	63
(421) (591)	20 5 <i>0</i>	20	(002)	154	156	(352)	66	65
(021) (791)	90 94	40	(1002)	32	25	(452)	28	22
(891)	91 105	202	(1202)	42	$\frac{29}{28}$	(552)	80	79
(041)	100	404	(100)		-0	1 ()		

Tabelle 2. Beobachtete und berechnete Strukturamplituden für $$K_2[Ge_4O_9]$$

Fortsetzung	(Tabelle	2)
-------------	----------	----

(hkl)	$ F_0 $	$ F_c $	(hkl)	$ F_0 $	$ F_c $	(hkl)	$ F_0 $	$ F_c $
(652)	27	21	(813)	71	63	(183)	82	74
(752)	25	18	(1013)	59	64	(283)	80	87
(852)	59	57	(1213)	20	18	(483)	29	29
(952)	60	61	(123)	107	107	(583)	125	117
(062)	138	140	(223)	151	173	(683)	29	31
(162)	26	25	(323)	76	82	(193)	55	55
(262)	55	55	(423)	42	36	(393)	78	88
(362)	199	222	(523)	167	168	(493)	65	64
(662)	61	50	(623)	49	45	(593)	27	27
(762)	21	18	(723)	101	93	(1103)	48	54
(962)	67	75	(823)	98	92	(3103)	30	24
(072)	27	17	(1123)	59	56	(4103)	42	36
(172)	124	112	(133)	80	82	(1113)	19	11
(272)	113	97	(233)	31	30	(2113)	51	52
(372)	28	23	(333)	84	92	(1123)	14	16
(572)	31	24	(433)	104	100	(104)	137	153
(672)	52	50	(533)	56	57	(204)	87	85
(772)	92	94	(633)	82	74	(304)	19	13
(872)	43	39	(733)	81	73	(404)	139	159
(082)	49	41	(933)	78	81	(504)	120	123
(182)	28	27	(1033)	84	71	(604)	294	317
(282)	153	147	(1133)	13	11	(704)	140	120
(382)	46	42	(143)	143	144	(904)	40	35
(482)	69	68	(243)	24	23	(1004)	124	116
(582)	83	88	(343)	74	74	(1104)	- 71	71
(782)	31	37	(443)	124	130	(1204)	107	105
(092)	154	132	(543)	41	42	(014)	118	122
(192)	47	41	(643)	29	32	(114)	90	92
(292)	- 26	22	(743)	66	59	(314)	36	36
(392)	180	184	(843)	24	24	(414)	211	220
(492)	34	30	(943)	46	52	(514)	201	224
(592)	37	37	(1043)	48	45	(614)	79	76
(692)	67	84	(153)	50	45	(714)	58	59
(0102)	53	57	(253)	167	176	(914)	76	77
(1102)	69	70	(353)	79	74	(1014)	137	140
(3102)	64 0 7	66	(553)	82	76	(1114)	102	95
(4102)	95	89	(753)	24	28	(024)	44	39
(2112)	40	37	(853)	125	110	(124)	36	31
(3112)	32	34	(953)	24	21	(324)	33	28
(0122)	17	13	(163)	27	29	(524)	77	75
(0132)	43	45	(263)	49	49	(624)	29	22
(113)	300	285	(363)	71	60	(724)	29	25
(213)	132	129	(463)	29	18	(924)	35	30
(313) (419)	17	4	(863)	25	29	(1024)	34	28
(413) (519)	143	103	(173)	222	215	(1124)	31	25
(013) (619)	31	32	(273)	82	74	(034)	19	16
(013)	47	49	(473)	77	79	(134)	72	63
(13)	222	219	(773)	133	146	(234)	46	42

(hkl)	$ F_0 $	$ F_c $	(hkl)	$ F_0 $	$ F_c $	(hkl)	$ F_0 $	$ F_c $
(334)	43	37	(4104)	18	22	(765)	27	21
(434)	38	32	(0114)	129	126	(865)	25	38
(634)	51	52	(1114)	59	54	(175)	28	25
(734)	28	17	(2114)	36	37	(275)	157	144
(934)	26	22	(0124)	87	91	(375)	33	29
(1034)	15	14	(1124)	33	32	(675)	19	20
(044)	107	101	(115)	20	13	(775)	32	39
(144)	210	239	(215)	159	162	(185)	67	68
(244)	101	88	(315)	36	30	(285)	146	149
(344)	27	21	(415)	24	14	(485)	39	39
(444)	57	60	(615)	48	40	(685)	25	29
(644)	58	60	(815)	95	95	(195)	70	73
(744)	106	90	(1015)	35	34	(395)	64	64
(844)	39	33	(125)	98	102	(495)	87	105
(944)	30	32	(225)	258	274	(1105)	49	51
(1044)	22	22	(325)	86	85	(2105)	40	34
(054)	269	269	(425)	44	42	(3105)	33	38
(154)	164	170	(625)	49	40	(106)	103	110
(254)	95	81	(725)	68	69	(206)	93	106
(354)	50	50	(825)	146	144	(306)	20	11
(554)	142	142	(1025)	20	16	(406)	57	57
(654)	132	137	(1125)	23	31	(506)	36	17
(754)	47	43	(135)	147	145	(606)	156	175
(854)	51	43	(235)	46	41	(806)	39	30
(064)	294	312	(335)	71	73	(906)	25	17
(164)	158	148	(435)	170	172	(1106)	34	38
(264)	29	22	(535)	56	61	(016)	73	75
(364)	42	39	(635)	40	33	(116)	61	68
(464)	81	76	(735)	92	99	(216)	207	223
(564)	93	90	(935)	52	54	(316)	88	93
(664)	149	161	(1035)	74	78	(416)	35	27
(764)	75	63	(145)	24	24	(516)	66	60
(074)	29	25	(245)	36	39	(716)	79	86
(174)	58	50	(345)	66	61	(816)	167	143
(274)	29	27	(445)	177	185	(916)	39	30
(374)	$\frac{-3}{28}$	23	(545)	56	54	(1116)	37	45
(474)	92	96	(645)	27	26	(026)	66	63
(574)	114	100	(745)	48	50	(126)	53	50
(674)	19	16	(845)	56	54	(226)	193	188
(084)	59	55	(945)	39	43	(326)	187	179
(484)	23	26	(155)	45	43	(426)	75	79
(584)	$\frac{-3}{32}$	33	(355)	56	65	(526)	79	78
(684)	30	23	(555)	38	30	(626)	98	94

36

 $\mathbf{34}$

69

56

 $\mathbf{27}$

56

 $\mathbf{30}$

81

147

55

 $\mathbf{54}$

28

 $\mathbf{72}$

137

55

(755)

(165)

(265)

(365)

(465)

39

 $\mathbf{29}$

64

 $\mathbf{49}$

 $\mathbf{20}$

(726)

(826)

(926)

(1026)

(036)

 $\mathbf{54}$

97

67

 $\mathbf{26}$

35

50

99

 $\mathbf{64}$

 $\mathbf{27}$

 $\mathbf{30}$

Fortsetzung (Tabelle 2)

(684)

(194)

(594)

(0104)

(1104)

(2104)

|--|

(hkl)	$ F_0 $	$ F_c $	(hkl)	$ F_0 $	$ F_c $	(hkl)	$ F_0 $	$ F_c $
(136)	197	183	(496)	83	104	(108)	266	304
(236)	48	33	(2106)	37	38	(308)	93	97
(436)	136	154	(0116)	88	104	(408)	147	156
(536)	49	34	(117)	21	22	(508)	99	91
(736)	88	104	(217)	141	169	(708)	136	123
(836)	52	51	(317)	42	39	(908)	47	43
(046)	46	36	(417)	29	27	(1008)	91	110
(146)	70	64	(717)	35	31	(018)	49	39
(246)	65	61	(817)	124	103	(118)	64	60
(346)	55	4 6	(127)	63	65	(418)	42	34
(446)	98	105	(227)	83	88	(518)	226	220
(546)	48	41	(327)	92	91	(618)	35	18
(646)	26	16	(627)	43	46	(718)	55	47
(746)	44	39	(727)	56	52	(818)	46	50
(846)	95	91	(827)	67	61	(028)	108	119
(946)	64	82	(137)	163	174	(628)	41	33
(056)	146	126	(237)	23	23	(928)	35	34
(156)	76	80	(337)	42	37	(038)	83	71
(256)	79	78	(437)	160	182	(138)	32	28
(356)	139	136	(537)	25	24	(338)	71	70
(656)	91	100	(737)	116	112	(638)	60	60
(756)	18	18	(837)	19	20	(048)	33	14
(856)	39	47	(937)	16	17	(148)	69	66
(066)	156	156	(147)	23	20	(248)	87	86
(266)	57	62	(247)	49	49	(548)	107	103
(566)	45	43	(347)	51	44	(648)	26	13
(666)	101	107	(447)	62	60	(748)	26	28
(766)	34	41	(547)	59	60	(058)	222	244
(076)	40	45	(847)	72	74	(158)	36	20
(176)	79	78	(257)	36	29	(258)	61	48
(276)	154	149	(357)	71	62	(458)	31	25
(376)	25	25	(267)	25	23	(558)	52	47
(476)	44	44	(367)	24	20	(658)	182	210
(676)	24	27	(177)	25	23	(168)	156	144
(086)	135	116	(277)	146	149	(368)	60	55
(186)	91	91	(377)	21	11	(468)	140	137
(286)	84	87	(187)	38	39	(568)	54	39
(386)	103	102	(287)	55	56	(478)	45	38
(486)	21	14	(487)	28	28	(098)	82	85
(586)	70	78	(197)	70	72	(198)	38	41
(196)	79	83	(297)	25	27	(298)	15	18
(296)	39	42	(397)	16	18	(0108)	35	44

In Tab. 1 sind die Atomparameter und Temperaturkoeffizienten der Kristallstruktur zusammengestellt. Ein Vergleich der beobachteten und berechneten Strukturamplituden ist in Tab. 2 wiedergegeben.

Diskussion der Kristallstruktur

Die Kristallstruktur des Kaliumtetragermanats kann als Abkömmling des Wadeits mit einer entsprechenden Formulierung als Ringgermanat $K_2Ge[Ge_3O_9]$ aufgefaßt werden, aber ebensogut als Gerüststruktur, in der die [Ge_3O_9]-Ringe über [GeO_6]-Oktaeder zu einem dreidimensionalen Verband verknüpft vorliegen (Abb. 1).

Tabelle 3. Interatomare Abstände und Winkel (in Å bzw. Grad) für $K_2[Ge_4O_9]$; die Standardabweichung für die Winkel beträgt etwa 0.8°, für die Abstände ist sie in Klammern angegeben

and the second s			and the second secon		the second s	
K0(1)	2.826 (17)	Ge(3) - O(2)	1.743	(15) $(2 \times)$)
-0(2)	2.753 (15)	O(3)	1.796	(14) $(2 \times)$	
-O(3)	2.749 (15)				
O(3')	2.734 (15)	Mittelwert	1.769		
-0(4)	2.839 (16)				
-0(5)	2.960 (14)	Ge(4)-O(1)	1.767	(17)	
-0(5')	2.781 (14)	O(3)	1.786	(14)	
			O(4)	1.735	(15)	
Mittelwert	2.806		~_O(5)	1.738	(13)	
Ge(1)O(2)	1.893 (15) ($6 \times$)	Mittelwert	1.756		
Ge(2) - O(4)	1.878 (15) (3×)	O(2)—Ge(3)-	-O(2)	126.8	
-0(5)	1.883 ($(3 \times)$		-0(3)	103.4 (2	×
0(0)			-	-O(3)	108.2 (2	хý
Mittelwert	1.880		O(3)Ge (3) -	-O(3)	105.2	
O(2)—Ge(1)	O(2)	88.8 $(6 \times)$	Mitt	elwert	109.2	
	-0(2)	$180.0(3\times)$	O(1) - Ge(4)	-O(3)	106.7	
		100.0 (0×7		-0(4)	115.9	
O(4) - Ge(2)	0(4)	90.9 $(3 \times)$	-	-0(5)	94.4	
0(1) 00(2)	-0(5)	$87.9 (3 \times)$	O(3) - Ge(4)	-0(4)	100.9	
	-0(5)	$89.7 (3 \times)$		-0(5)	110.4	
	-0(5)	$178.6 (3 \times)$	O(5)Ge(4)-	-O(5)	127.5	
O(5) - Ge(2)	-O(5)	91.6 $(3 \times)$				
., ., .,		· · ·	\mathbf{Mitt}	elwert	109.3	
Ge(4)O(1)-	-Ge(4)	127.6				
Ge(3)O(3)-	$-\mathrm{Ge}(4)$	126.5				

Die ringförmige Baugruppe, die aus drei $[GeO_4]$ -Tetraedern besteht, weist als Eigensymmetrie eine zweizählige Achse auf, die durch ein Germaniumatom und das ihm im Ring gegenüberliegende Brückensauerstoffatom verläuft (Abb. 2).

Die Ge—O-Abstände in der tetraedrischen Koordination liegen im Mittel für die Brückensauerstoffatome mit 1.783 Å etwas über jenen für die terminalen Sauerstoffatome mit 1.739 Å (Tab. 3). In Übereinstimmung mit den bekannten Kettengermanaten und -silicaten zeigt auch hier das Germanat an den Brückensauerstoffatomen einen etwas kleineren Bindungswinkel als die entsprechenden Silicate; 126.5 und 127.6° gegenüber 132.9° beim Benitoit¹⁴.

Abb. 1. Projektion der Struktur von $K_2[Ge_4O_9]$ nach [001]; die Darstellung zeigt die Lage der [GeO₄]-Tetraeder und [GeO₆]-Oktaeder sowie die Positionen der Kaliumionen

Abb. 2. Ringförmige Baugruppe aus drei $[GeO_4]$ -Tetraedern in $K_2[Ge_4O_9]$; interatomare Abstände in Å

Der mittlere Ge—O-Abstand für die oktaedrische Koordination entspricht mit 1.886 Å genau dem erwarteten Wert. Die Kaliumionen sind wie im Wadeit zu beiden Seiten der ringförmigen Baugruppen angeordnet und weisen für die Koordinationszahl 7 einen mittleren Sauerstoffabstand von 2.81 Å auf.

Die Tetragermanate der einwertigen Ionen Rb, Tl und Ag sind auf Grund indizierter Pulveraufnahmen^{4, 6} isotyp mit $K_2[Ge_4O_9]$. Für das

¹⁴ Karl Fischer, Z. Kristallogr. 129, 222 (1969).

1254 H. Völlenkle u. a.: Die Kristallstruktur des Kaliumtetragermanats

Natriumtetragermanat, Na₂Ge₄O₉, ergibt sich aus Einkristallaufnahmen zwar eine ausgeprägte Ähnlichkeit mit der Kaliumverbindung⁴, jedoch wurde als wahrscheinliche Raumgruppe P6₃/m angegeben¹⁵, weshalb noch weitere Untersuchungen angebracht erscheinen.

Herrn Prof. Dr. H. Nowotny danken wir bestens für die wohlwollende Förderung dieser Arbeit.

Die Rechenarbeiten konnten mit der Rechenanlage IBM 7040 des Instituts für numerische Mathematik der Technischen Hochschule Wien durchgeführt werden, wofür wir dem Vorstand, Herrn Prof. Dr. *H. Stetter*, bestens danken.

¹⁵ J. H. Jolly und R. L. Myklebust, Acta cryst. [Kopenhagen] B 24, 460 (1968).